Advanced Electroplating Process for IC Substrates
Sam Dharmarathna
Line of Business R&D – IC Substrates

MacDermid Alpha Electronics Solutions

$1.4 B
2023 NET SALES

>30 COUNTRIES
WITH FACILITY OPERATIONS

>6,800
CUSTOMERS WORLDWIDE

>2,200
EMPLOYEES
We are INTEGRAL to Electronics Manufacturing

Our Product Offerings
A Full Portfolio to Support the Electronics Manufacturing Industry
Additives Tailored to Customer Needs

- In-House synthesis - Libraries of Additive Molecules
 - Develop and maintain comprehensive collections of additive molecules to reduce the time from conception to market.

- Novel Molecules – IP Protection
 - Create innovative molecules with the potential for intellectual property protection.

- Fine Tune Performance – Fine L/S
 - Ability to modify the electro-chemical properties of additives and physical/mechanical properties of deposit leading to robust plating formulations.

Tailored Formulations To Enable Specific Technologies

- Ability to Modulate – Flat vs. Domed
 - Develop molecules that enable the modulation of surface profiles.

- Mitigate Defects - Reliability
 - Proprietary blend of functional groups in the molecules to control grain refinement and final grain structure.

- Deposit Properties - Mechanical, Physical & Purity
Plating Tools for Advanced Packaging

- Electrodeposition for advanced L/S requires precise coordination and cadence between equipment and additives to achieve optimal performance.
- Modern tools utilize unique mass transfer methods as opposed to conventional VCP systems.

- Better understanding of tools and additives leads to more robust formulations.

IC Substrate Technology

- Higher functionality with more components in a “package”
 - Sensors, memory, logic, CPU
 - PoP, SiP, etc.
- Transition from wire bonding to flip chip designs
 - Reduced chip area
 - Increased I/O count
 - Reduced inductance
 - Higher signal speeds
 - Improved heat management
- Still need to route signals out of the die to the component substrate for connection to the PCB.
Deposition Mechanism

- Bath composition
 - Lower H_2SO_4 to reduce solution conductivity and promote larger difference in potentials
 - Higher CuSO_4 to increase filling speed
 - Chloride ions provide adsorption sites

- Additives
 - Suppressor preferentially adsorbed on the surface
 - Brightener diffuses to the bottom of the microvia
 - Leveler selectively adsorbs on the high current areas

- Fill progression
 - Plating at via bottom is fastest at the beginning
 - As plating proceeds, the potential differences and plating rate difference of surface and microvia lessen
 - Once filled, all plating rates are similar

Systek UVF 200 Process Overview

- DC Acid Copper plating process specifically designed for 2-in-1 RDL applications for FCBGA

 - Pattern plate process
 - High coplanarity of traces and pads
 - Typically, <2 μm R-Value
 - Highly controlled trace profile
 - Typically, <15%
 - Via Fill
 - Up to 60 μmØ x 30-35 μm deep
 - Dimple: <5 μm, Overfill <3 μm
 - Surface Copper: 10-15 μm

- Compatible with High-Speed Plating Tools
 - ASM-NEXX Stratus P500
 - Semsysco
Capabilities

- Panels with different designs, feature sizes, and copper thickness specifications were plated during the evaluation

<table>
<thead>
<tr>
<th>Features/Spec</th>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line/Space</td>
<td>9/12 μm</td>
<td>15/20 μm</td>
</tr>
<tr>
<td>BMV Diameter</td>
<td>40 μm</td>
<td>49 μm</td>
</tr>
<tr>
<td>BMV Depth</td>
<td>15 μm</td>
<td>20 μm</td>
</tr>
<tr>
<td>Plating Thickness</td>
<td>12 μm</td>
<td>17 μm</td>
</tr>
<tr>
<td>Plating Time</td>
<td>15 minutes</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Current Density</td>
<td>4-5 ASD</td>
<td>5-6 ASD</td>
</tr>
<tr>
<td>Dimple</td>
<td>± 2 μm (POR)</td>
<td>± 2 μm (POR)</td>
</tr>
<tr>
<td>Uniformity (W/L)</td>
<td>2 μm (POR)</td>
<td><5 μm (POR)</td>
</tr>
<tr>
<td>Uniformity (W/P)</td>
<td><15% (POR)</td>
<td><15% (POR)</td>
</tr>
<tr>
<td>Anode</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
</tbody>
</table>

- 9 areas were measured on each side of the panel
- The best result was with 200/120/50 VMS
Substrate Design 1 Results
Copper Thickness vs Feature, VMS

- The average R_{WID} was calculated via the difference on the plated height between fine line and pad/filled via.
- R-value improved with lower copper sulfate and higher sulfuric acid.
- WID uniformity was < 2 um with copper sulfate concentration < 200 g/L.
- WID uniformity was further improved with additional sulfuric acid.
Capabilities

• Panels with different designs, feature sizes, and copper thickness specifications were plated during the evaluation.

<table>
<thead>
<tr>
<th>Features/Spec</th>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line/Space</td>
<td>9/12 μm</td>
<td>15/20 μm</td>
</tr>
<tr>
<td>BMV Diameter</td>
<td>40 μm</td>
<td>49 μm</td>
</tr>
<tr>
<td>BMV Depth</td>
<td>15 μm</td>
<td>20 μm</td>
</tr>
<tr>
<td>Plating Thickness</td>
<td>12 μm</td>
<td>17 μm</td>
</tr>
<tr>
<td>Plating Time</td>
<td>15 minutes</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Current Density</td>
<td>4-5 ASD</td>
<td>5-6 ASD</td>
</tr>
<tr>
<td>Dimple</td>
<td>± 2 μm ± 2 μm (POR)</td>
<td>± 2 μm ± 2 μm (POR)</td>
</tr>
<tr>
<td>Uniformity (WIU)</td>
<td>2 μm ± 4 μm (POR)</td>
<td><5 μm ± 8 μm (POR)</td>
</tr>
<tr>
<td>Uniformity (WIP)</td>
<td><15% ± 20% (POR)</td>
<td><15% ± 20% (POR)</td>
</tr>
<tr>
<td>Anode</td>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
</tbody>
</table>

• 9 areas were measured on each side of the panel by ZYGO profiler
• The best result was with 200/120/50 VMS.

Substrate Design 2 Results
Copper Thickness vs Feature, VMS
Substrate Design 2 Results

Uniformity

- The average R_{WID} was calculated via the difference on the plated height between fine line and pad/filled via
- R-value improved with lower copper sulfate and higher sulfuric acid
- WID uniformity was < 5 µm with copper sulfate concentration < 240 g/L

Via Fill Results

- Via size: 40x15 µm
- Plated thickness: 12 µm
- All conditions resulted in a bump on the filled vias
- As Cu was reduced and acid was increased, the domes on the filled vias decreased and the uniformity improved (reduced R values)

<table>
<thead>
<tr>
<th>VMS</th>
<th>Bump (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240/40/50</td>
<td>3.8</td>
</tr>
<tr>
<td>200/120/50</td>
<td>0.9</td>
</tr>
</tbody>
</table>
SIMS Analysis

- Low impurities co-deposit with Cu
 - Electrical conductivity, grain structure, Cu reduction during SAP / mSAP, physical properties

Properties of Deposit

- Physical properties exceeded IPC class III specifications
- Deposit had equiaxial grain structure

<table>
<thead>
<tr>
<th>Plating Condition</th>
<th>2.0 ASD, 25°C</th>
<th>4.5 ASD, 35°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation (%)</td>
<td>22.0</td>
<td>20.1</td>
</tr>
<tr>
<td>Tensile Strength (kPSI)</td>
<td>40.4</td>
<td>40.4</td>
</tr>
<tr>
<td>Internal Tensile Stress (kg/mm²)</td>
<td>0.87</td>
<td>0.85</td>
</tr>
</tbody>
</table>
UVF 200 Summary

- Systek UVF 200 is a versatile plating process for the 2-in-1 RDL plating of fine lines and filling of microvias in build up layer applications
 - Filling of microvias up to 60 μmØ x 30 μmD
 - Plating thickness of 15-18 μm within 15–20 min plating time
 - Low R-values between various features
 - Good within device (WID) and within panel (WIP) uniformity
- Process is very stable and tunable
 - Wide VMS operating range
 - Wide operating current density range
 - Compatible with Nafion membranes
 - All additives are CVS analyzable and controllable

Next Gen RDL Plating
Systek UVF 300

- Reduced variation in copper thickness
- High coplanarity across a wide range of current density
- Consistent via fill
Contact Us

Sam Dharmarathna
Line of Business Partner – IC substrate R&D

saminda.dharmarathna@macdermidalpha.com
macdermidalpha.com
https://www.linkedin.com/in/dasaminda/